Book Review: Vector bundles on complex projective spaces
نویسندگان
چکیده
منابع مشابه
Mirror Symmetry for Concavex Vector Bundles on Projective Spaces
Let V + = ⊕i∈IO(ki) and V − = ⊕j∈JO(−lj) be vector bundles on P s with ki and lj positive integers. Suppose X ι →֒ Ps is the zero locus of a generic section of V + and Y is a projective manifold such that X j →֒ Y with normal bundle NX/Y = ι ∗(V −). The relations between Gromov-Witten theories of X and Y are studied here by means of a suitably defined equivariant Gromov-Witten theory in Ps. We ap...
متن کاملOn Stable Vector Bundles over Real Projective Spaces
If X is a connected, finite CJF-complex, we can define iKO)~iX) to be [X, BO] (base-point preserving homotopy classes of maps). Recall [2] that if xEiKO)~iX), the geometrical dimension of x (abbreviated g.dim x) can be defined to be the smallest nonnegative integer k such that a representative of x factors through BO(k). If $ is a vector bundle over X, the class in (PO)~(X) of a classifying map...
متن کاملVector Bundles on Projective Space
Let X be a (quasi-projective) variety over k. We follow [Sha13, Chap. 6, §1.2].
متن کاملStably extendible vector bundles over the quaternionic projective spaces
We show that, if a quaternionic k-dimensional vector bundle l' over the quaternionic projective space Hpn is stably extendible and its non-zero top Pontrjagin class is not zero mod 2, then l' is stably equivalent to the Whitney sum of k quaternionic line bundles provided k S; n.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bulletin of the American Mathematical Society
سال: 1981
ISSN: 0273-0979
DOI: 10.1090/s0273-0979-1981-14946-6